123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251 |
- /**
- * @license
- * Cesium - https://github.com/CesiumGS/cesium
- * Version 1.95
- *
- * Copyright 2011-2022 Cesium Contributors
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * Columbus View (Pat. Pend.)
- *
- * Portions licensed separately.
- * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
- */
- define(['exports', './Transforms-273eeb44', './Matrix2-9e1c22e2', './RuntimeError-4f8ec8a2', './defaultValue-97284df2', './AttributeCompression-f202be44', './ComponentDatatype-4eeb6d9b'], (function (exports, Transforms, Matrix2, RuntimeError, defaultValue, AttributeCompression, ComponentDatatype) { 'use strict';
- /**
- * Determine whether or not other objects are visible or hidden behind the visible horizon defined by
- * an {@link Ellipsoid} and a camera position. The ellipsoid is assumed to be located at the
- * origin of the coordinate system. This class uses the algorithm described in the
- * {@link https://cesium.com/blog/2013/04/25/Horizon-culling/|Horizon Culling} blog post.
- *
- * @alias EllipsoidalOccluder
- *
- * @param {Ellipsoid} ellipsoid The ellipsoid to use as an occluder.
- * @param {Cartesian3} [cameraPosition] The coordinate of the viewer/camera. If this parameter is not
- * specified, {@link EllipsoidalOccluder#cameraPosition} must be called before
- * testing visibility.
- *
- * @constructor
- *
- * @example
- * // Construct an ellipsoidal occluder with radii 1.0, 1.1, and 0.9.
- * const cameraPosition = new Cesium.Cartesian3(5.0, 6.0, 7.0);
- * const occluderEllipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
- * const occluder = new Cesium.EllipsoidalOccluder(occluderEllipsoid, cameraPosition);
- *
- * @private
- */
- function EllipsoidalOccluder(ellipsoid, cameraPosition) {
- //>>includeStart('debug', pragmas.debug);
- RuntimeError.Check.typeOf.object("ellipsoid", ellipsoid);
- //>>includeEnd('debug');
- this._ellipsoid = ellipsoid;
- this._cameraPosition = new Matrix2.Cartesian3();
- this._cameraPositionInScaledSpace = new Matrix2.Cartesian3();
- this._distanceToLimbInScaledSpaceSquared = 0.0;
- // cameraPosition fills in the above values
- if (defaultValue.defined(cameraPosition)) {
- this.cameraPosition = cameraPosition;
- }
- }
- Object.defineProperties(EllipsoidalOccluder.prototype, {
- /**
- * Gets the occluding ellipsoid.
- * @memberof EllipsoidalOccluder.prototype
- * @type {Ellipsoid}
- */
- ellipsoid: {
- get: function () {
- return this._ellipsoid;
- },
- },
- /**
- * Gets or sets the position of the camera.
- * @memberof EllipsoidalOccluder.prototype
- * @type {Cartesian3}
- */
- cameraPosition: {
- get: function () {
- return this._cameraPosition;
- },
- set: function (cameraPosition) {
- // See https://cesium.com/blog/2013/04/25/Horizon-culling/
- const ellipsoid = this._ellipsoid;
- const cv = ellipsoid.transformPositionToScaledSpace(
- cameraPosition,
- this._cameraPositionInScaledSpace
- );
- const vhMagnitudeSquared = Matrix2.Cartesian3.magnitudeSquared(cv) - 1.0;
- Matrix2.Cartesian3.clone(cameraPosition, this._cameraPosition);
- this._cameraPositionInScaledSpace = cv;
- this._distanceToLimbInScaledSpaceSquared = vhMagnitudeSquared;
- },
- },
- });
- const scratchCartesian = new Matrix2.Cartesian3();
- /**
- * Determines whether or not a point, the <code>occludee</code>, is hidden from view by the occluder.
- *
- * @param {Cartesian3} occludee The point to test for visibility.
- * @returns {Boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
- *
- * @example
- * const cameraPosition = new Cesium.Cartesian3(0, 0, 2.5);
- * const ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
- * const occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition);
- * const point = new Cesium.Cartesian3(0, -3, -3);
- * occluder.isPointVisible(point); //returns true
- */
- EllipsoidalOccluder.prototype.isPointVisible = function (occludee) {
- const ellipsoid = this._ellipsoid;
- const occludeeScaledSpacePosition = ellipsoid.transformPositionToScaledSpace(
- occludee,
- scratchCartesian
- );
- return isScaledSpacePointVisible(
- occludeeScaledSpacePosition,
- this._cameraPositionInScaledSpace,
- this._distanceToLimbInScaledSpaceSquared
- );
- };
- /**
- * Determines whether or not a point expressed in the ellipsoid scaled space, is hidden from view by the
- * occluder. To transform a Cartesian X, Y, Z position in the coordinate system aligned with the ellipsoid
- * into the scaled space, call {@link Ellipsoid#transformPositionToScaledSpace}.
- *
- * @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space.
- * @returns {Boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
- *
- * @example
- * const cameraPosition = new Cesium.Cartesian3(0, 0, 2.5);
- * const ellipsoid = new Cesium.Ellipsoid(1.0, 1.1, 0.9);
- * const occluder = new Cesium.EllipsoidalOccluder(ellipsoid, cameraPosition);
- * const point = new Cesium.Cartesian3(0, -3, -3);
- * const scaledSpacePoint = ellipsoid.transformPositionToScaledSpace(point);
- * occluder.isScaledSpacePointVisible(scaledSpacePoint); //returns true
- */
- EllipsoidalOccluder.prototype.isScaledSpacePointVisible = function (
- occludeeScaledSpacePosition
- ) {
- return isScaledSpacePointVisible(
- occludeeScaledSpacePosition,
- this._cameraPositionInScaledSpace,
- this._distanceToLimbInScaledSpaceSquared
- );
- };
- const scratchCameraPositionInScaledSpaceShrunk = new Matrix2.Cartesian3();
- /**
- * Similar to {@link EllipsoidalOccluder#isScaledSpacePointVisible} except tests against an
- * ellipsoid that has been shrunk by the minimum height when the minimum height is below
- * the ellipsoid. This is intended to be used with points generated by
- * {@link EllipsoidalOccluder#computeHorizonCullingPointPossiblyUnderEllipsoid} or
- * {@link EllipsoidalOccluder#computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid}.
- *
- * @param {Cartesian3} occludeeScaledSpacePosition The point to test for visibility, represented in the scaled space of the possibly-shrunk ellipsoid.
- * @returns {Boolean} <code>true</code> if the occludee is visible; otherwise <code>false</code>.
- */
- EllipsoidalOccluder.prototype.isScaledSpacePointVisiblePossiblyUnderEllipsoid = function (
- occludeeScaledSpacePosition,
- minimumHeight
- ) {
- const ellipsoid = this._ellipsoid;
- let vhMagnitudeSquared;
- let cv;
- if (
- defaultValue.defined(minimumHeight) &&
- minimumHeight < 0.0 &&
- ellipsoid.minimumRadius > -minimumHeight
- ) {
- // This code is similar to the cameraPosition setter, but unrolled for performance because it will be called a lot.
- cv = scratchCameraPositionInScaledSpaceShrunk;
- cv.x = this._cameraPosition.x / (ellipsoid.radii.x + minimumHeight);
- cv.y = this._cameraPosition.y / (ellipsoid.radii.y + minimumHeight);
- cv.z = this._cameraPosition.z / (ellipsoid.radii.z + minimumHeight);
- vhMagnitudeSquared = cv.x * cv.x + cv.y * cv.y + cv.z * cv.z - 1.0;
- } else {
- cv = this._cameraPositionInScaledSpace;
- vhMagnitudeSquared = this._distanceToLimbInScaledSpaceSquared;
- }
- return isScaledSpacePointVisible(
- occludeeScaledSpacePosition,
- cv,
- vhMagnitudeSquared
- );
- };
- /**
- * Computes a point that can be used for horizon culling from a list of positions. If the point is below
- * the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point
- * is expressed in the ellipsoid-scaled space and is suitable for use with
- * {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
- *
- * @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
- * A reasonable direction to use is the direction from the center of the ellipsoid to
- * the center of the bounding sphere computed from the positions. The direction need not
- * be normalized.
- * @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions
- * must be expressed in a reference frame centered at the ellipsoid and aligned with the
- * ellipsoid's axes.
- * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
- * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
- */
- EllipsoidalOccluder.prototype.computeHorizonCullingPoint = function (
- directionToPoint,
- positions,
- result
- ) {
- return computeHorizonCullingPointFromPositions(
- this._ellipsoid,
- directionToPoint,
- positions,
- result
- );
- };
- const scratchEllipsoidShrunk = Matrix2.Ellipsoid.clone(Matrix2.Ellipsoid.UNIT_SPHERE);
- /**
- * Similar to {@link EllipsoidalOccluder#computeHorizonCullingPoint} except computes the culling
- * point relative to an ellipsoid that has been shrunk by the minimum height when the minimum height is below
- * the ellipsoid. The returned point is expressed in the possibly-shrunk ellipsoid-scaled space and is suitable
- * for use with {@link EllipsoidalOccluder#isScaledSpacePointVisiblePossiblyUnderEllipsoid}.
- *
- * @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
- * A reasonable direction to use is the direction from the center of the ellipsoid to
- * the center of the bounding sphere computed from the positions. The direction need not
- * be normalized.
- * @param {Cartesian3[]} positions The positions from which to compute the horizon culling point. The positions
- * must be expressed in a reference frame centered at the ellipsoid and aligned with the
- * ellipsoid's axes.
- * @param {Number} [minimumHeight] The minimum height of all positions. If this value is undefined, all positions are assumed to be above the ellipsoid.
- * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
- * @returns {Cartesian3} The computed horizon culling point, expressed in the possibly-shrunk ellipsoid-scaled space.
- */
- EllipsoidalOccluder.prototype.computeHorizonCullingPointPossiblyUnderEllipsoid = function (
- directionToPoint,
- positions,
- minimumHeight,
- result
- ) {
- const possiblyShrunkEllipsoid = getPossiblyShrunkEllipsoid(
- this._ellipsoid,
- minimumHeight,
- scratchEllipsoidShrunk
- );
- return computeHorizonCullingPointFromPositions(
- possiblyShrunkEllipsoid,
- directionToPoint,
- positions,
- result
- );
- };
- /**
- * Computes a point that can be used for horizon culling from a list of positions. If the point is below
- * the horizon, all of the positions are guaranteed to be below the horizon as well. The returned point
- * is expressed in the ellipsoid-scaled space and is suitable for use with
- * {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
- *
- * @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
- * A reasonable direction to use is the direction from the center of the ellipsoid to
- * the center of the bounding sphere computed from the positions. The direction need not
- * be normalized.
- * @param {Number[]} vertices The vertices from which to compute the horizon culling point. The positions
- * must be expressed in a reference frame centered at the ellipsoid and aligned with the
- * ellipsoid's axes.
- * @param {Number} [stride=3]
- * @param {Cartesian3} [center=Cartesian3.ZERO]
- * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
- * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
- */
- EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVertices = function (
- directionToPoint,
- vertices,
- stride,
- center,
- result
- ) {
- return computeHorizonCullingPointFromVertices(
- this._ellipsoid,
- directionToPoint,
- vertices,
- stride,
- center,
- result
- );
- };
- /**
- * Similar to {@link EllipsoidalOccluder#computeHorizonCullingPointFromVertices} except computes the culling
- * point relative to an ellipsoid that has been shrunk by the minimum height when the minimum height is below
- * the ellipsoid. The returned point is expressed in the possibly-shrunk ellipsoid-scaled space and is suitable
- * for use with {@link EllipsoidalOccluder#isScaledSpacePointVisiblePossiblyUnderEllipsoid}.
- *
- * @param {Cartesian3} directionToPoint The direction that the computed point will lie along.
- * A reasonable direction to use is the direction from the center of the ellipsoid to
- * the center of the bounding sphere computed from the positions. The direction need not
- * be normalized.
- * @param {Number[]} vertices The vertices from which to compute the horizon culling point. The positions
- * must be expressed in a reference frame centered at the ellipsoid and aligned with the
- * ellipsoid's axes.
- * @param {Number} [stride=3]
- * @param {Cartesian3} [center=Cartesian3.ZERO]
- * @param {Number} [minimumHeight] The minimum height of all vertices. If this value is undefined, all vertices are assumed to be above the ellipsoid.
- * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
- * @returns {Cartesian3} The computed horizon culling point, expressed in the possibly-shrunk ellipsoid-scaled space.
- */
- EllipsoidalOccluder.prototype.computeHorizonCullingPointFromVerticesPossiblyUnderEllipsoid = function (
- directionToPoint,
- vertices,
- stride,
- center,
- minimumHeight,
- result
- ) {
- const possiblyShrunkEllipsoid = getPossiblyShrunkEllipsoid(
- this._ellipsoid,
- minimumHeight,
- scratchEllipsoidShrunk
- );
- return computeHorizonCullingPointFromVertices(
- possiblyShrunkEllipsoid,
- directionToPoint,
- vertices,
- stride,
- center,
- result
- );
- };
- const subsampleScratch = [];
- /**
- * Computes a point that can be used for horizon culling of a rectangle. If the point is below
- * the horizon, the ellipsoid-conforming rectangle is guaranteed to be below the horizon as well.
- * The returned point is expressed in the ellipsoid-scaled space and is suitable for use with
- * {@link EllipsoidalOccluder#isScaledSpacePointVisible}.
- *
- * @param {Rectangle} rectangle The rectangle for which to compute the horizon culling point.
- * @param {Ellipsoid} ellipsoid The ellipsoid on which the rectangle is defined. This may be different from
- * the ellipsoid used by this instance for occlusion testing.
- * @param {Cartesian3} [result] The instance on which to store the result instead of allocating a new instance.
- * @returns {Cartesian3} The computed horizon culling point, expressed in the ellipsoid-scaled space.
- */
- EllipsoidalOccluder.prototype.computeHorizonCullingPointFromRectangle = function (
- rectangle,
- ellipsoid,
- result
- ) {
- //>>includeStart('debug', pragmas.debug);
- RuntimeError.Check.typeOf.object("rectangle", rectangle);
- //>>includeEnd('debug');
- const positions = Matrix2.Rectangle.subsample(
- rectangle,
- ellipsoid,
- 0.0,
- subsampleScratch
- );
- const bs = Transforms.BoundingSphere.fromPoints(positions);
- // If the bounding sphere center is too close to the center of the occluder, it doesn't make
- // sense to try to horizon cull it.
- if (Matrix2.Cartesian3.magnitude(bs.center) < 0.1 * ellipsoid.minimumRadius) {
- return undefined;
- }
- return this.computeHorizonCullingPoint(bs.center, positions, result);
- };
- const scratchEllipsoidShrunkRadii = new Matrix2.Cartesian3();
- function getPossiblyShrunkEllipsoid(ellipsoid, minimumHeight, result) {
- if (
- defaultValue.defined(minimumHeight) &&
- minimumHeight < 0.0 &&
- ellipsoid.minimumRadius > -minimumHeight
- ) {
- const ellipsoidShrunkRadii = Matrix2.Cartesian3.fromElements(
- ellipsoid.radii.x + minimumHeight,
- ellipsoid.radii.y + minimumHeight,
- ellipsoid.radii.z + minimumHeight,
- scratchEllipsoidShrunkRadii
- );
- ellipsoid = Matrix2.Ellipsoid.fromCartesian3(ellipsoidShrunkRadii, result);
- }
- return ellipsoid;
- }
- function computeHorizonCullingPointFromPositions(
- ellipsoid,
- directionToPoint,
- positions,
- result
- ) {
- //>>includeStart('debug', pragmas.debug);
- RuntimeError.Check.typeOf.object("directionToPoint", directionToPoint);
- RuntimeError.Check.defined("positions", positions);
- //>>includeEnd('debug');
- if (!defaultValue.defined(result)) {
- result = new Matrix2.Cartesian3();
- }
- const scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint(
- ellipsoid,
- directionToPoint
- );
- let resultMagnitude = 0.0;
- for (let i = 0, len = positions.length; i < len; ++i) {
- const position = positions[i];
- const candidateMagnitude = computeMagnitude(
- ellipsoid,
- position,
- scaledSpaceDirectionToPoint
- );
- if (candidateMagnitude < 0.0) {
- // all points should face the same direction, but this one doesn't, so return undefined
- return undefined;
- }
- resultMagnitude = Math.max(resultMagnitude, candidateMagnitude);
- }
- return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result);
- }
- const positionScratch = new Matrix2.Cartesian3();
- function computeHorizonCullingPointFromVertices(
- ellipsoid,
- directionToPoint,
- vertices,
- stride,
- center,
- result
- ) {
- //>>includeStart('debug', pragmas.debug);
- RuntimeError.Check.typeOf.object("directionToPoint", directionToPoint);
- RuntimeError.Check.defined("vertices", vertices);
- RuntimeError.Check.typeOf.number("stride", stride);
- //>>includeEnd('debug');
- if (!defaultValue.defined(result)) {
- result = new Matrix2.Cartesian3();
- }
- stride = defaultValue.defaultValue(stride, 3);
- center = defaultValue.defaultValue(center, Matrix2.Cartesian3.ZERO);
- const scaledSpaceDirectionToPoint = computeScaledSpaceDirectionToPoint(
- ellipsoid,
- directionToPoint
- );
- let resultMagnitude = 0.0;
- for (let i = 0, len = vertices.length; i < len; i += stride) {
- positionScratch.x = vertices[i] + center.x;
- positionScratch.y = vertices[i + 1] + center.y;
- positionScratch.z = vertices[i + 2] + center.z;
- const candidateMagnitude = computeMagnitude(
- ellipsoid,
- positionScratch,
- scaledSpaceDirectionToPoint
- );
- if (candidateMagnitude < 0.0) {
- // all points should face the same direction, but this one doesn't, so return undefined
- return undefined;
- }
- resultMagnitude = Math.max(resultMagnitude, candidateMagnitude);
- }
- return magnitudeToPoint(scaledSpaceDirectionToPoint, resultMagnitude, result);
- }
- function isScaledSpacePointVisible(
- occludeeScaledSpacePosition,
- cameraPositionInScaledSpace,
- distanceToLimbInScaledSpaceSquared
- ) {
- // See https://cesium.com/blog/2013/04/25/Horizon-culling/
- const cv = cameraPositionInScaledSpace;
- const vhMagnitudeSquared = distanceToLimbInScaledSpaceSquared;
- const vt = Matrix2.Cartesian3.subtract(
- occludeeScaledSpacePosition,
- cv,
- scratchCartesian
- );
- const vtDotVc = -Matrix2.Cartesian3.dot(vt, cv);
- // If vhMagnitudeSquared < 0 then we are below the surface of the ellipsoid and
- // in this case, set the culling plane to be on V.
- const isOccluded =
- vhMagnitudeSquared < 0
- ? vtDotVc > 0
- : vtDotVc > vhMagnitudeSquared &&
- (vtDotVc * vtDotVc) / Matrix2.Cartesian3.magnitudeSquared(vt) >
- vhMagnitudeSquared;
- return !isOccluded;
- }
- const scaledSpaceScratch = new Matrix2.Cartesian3();
- const directionScratch = new Matrix2.Cartesian3();
- function computeMagnitude(ellipsoid, position, scaledSpaceDirectionToPoint) {
- const scaledSpacePosition = ellipsoid.transformPositionToScaledSpace(
- position,
- scaledSpaceScratch
- );
- let magnitudeSquared = Matrix2.Cartesian3.magnitudeSquared(scaledSpacePosition);
- let magnitude = Math.sqrt(magnitudeSquared);
- const direction = Matrix2.Cartesian3.divideByScalar(
- scaledSpacePosition,
- magnitude,
- directionScratch
- );
- // For the purpose of this computation, points below the ellipsoid are consider to be on it instead.
- magnitudeSquared = Math.max(1.0, magnitudeSquared);
- magnitude = Math.max(1.0, magnitude);
- const cosAlpha = Matrix2.Cartesian3.dot(direction, scaledSpaceDirectionToPoint);
- const sinAlpha = Matrix2.Cartesian3.magnitude(
- Matrix2.Cartesian3.cross(direction, scaledSpaceDirectionToPoint, direction)
- );
- const cosBeta = 1.0 / magnitude;
- const sinBeta = Math.sqrt(magnitudeSquared - 1.0) * cosBeta;
- return 1.0 / (cosAlpha * cosBeta - sinAlpha * sinBeta);
- }
- function magnitudeToPoint(
- scaledSpaceDirectionToPoint,
- resultMagnitude,
- result
- ) {
- // The horizon culling point is undefined if there were no positions from which to compute it,
- // the directionToPoint is pointing opposite all of the positions, or if we computed NaN or infinity.
- if (
- resultMagnitude <= 0.0 ||
- resultMagnitude === 1.0 / 0.0 ||
- resultMagnitude !== resultMagnitude
- ) {
- return undefined;
- }
- return Matrix2.Cartesian3.multiplyByScalar(
- scaledSpaceDirectionToPoint,
- resultMagnitude,
- result
- );
- }
- const directionToPointScratch = new Matrix2.Cartesian3();
- function computeScaledSpaceDirectionToPoint(ellipsoid, directionToPoint) {
- if (Matrix2.Cartesian3.equals(directionToPoint, Matrix2.Cartesian3.ZERO)) {
- return directionToPoint;
- }
- ellipsoid.transformPositionToScaledSpace(
- directionToPoint,
- directionToPointScratch
- );
- return Matrix2.Cartesian3.normalize(directionToPointScratch, directionToPointScratch);
- }
- /**
- * @private
- */
- const TerrainExaggeration = {};
- /**
- * Scales a height relative to an offset.
- *
- * @param {Number} height The height.
- * @param {Number} scale A scalar used to exaggerate the terrain. If the value is 1.0 there will be no effect.
- * @param {Number} relativeHeight The height relative to which terrain is exaggerated. If the value is 0.0 terrain will be exaggerated relative to the ellipsoid surface.
- */
- TerrainExaggeration.getHeight = function (height, scale, relativeHeight) {
- return (height - relativeHeight) * scale + relativeHeight;
- };
- const scratchCartographic = new Matrix2.Cartesian3();
- /**
- * Scales a position by exaggeration.
- */
- TerrainExaggeration.getPosition = function (
- position,
- ellipsoid,
- terrainExaggeration,
- terrainExaggerationRelativeHeight,
- result
- ) {
- const cartographic = ellipsoid.cartesianToCartographic(
- position,
- scratchCartographic
- );
- const newHeight = TerrainExaggeration.getHeight(
- cartographic.height,
- terrainExaggeration,
- terrainExaggerationRelativeHeight
- );
- return Matrix2.Cartesian3.fromRadians(
- cartographic.longitude,
- cartographic.latitude,
- newHeight,
- ellipsoid,
- result
- );
- };
- /**
- * This enumerated type is used to determine how the vertices of the terrain mesh are compressed.
- *
- * @enum {Number}
- *
- * @private
- */
- const TerrainQuantization = {
- /**
- * The vertices are not compressed.
- *
- * @type {Number}
- * @constant
- */
- NONE: 0,
- /**
- * The vertices are compressed to 12 bits.
- *
- * @type {Number}
- * @constant
- */
- BITS12: 1,
- };
- var TerrainQuantization$1 = Object.freeze(TerrainQuantization);
- const cartesian3Scratch = new Matrix2.Cartesian3();
- const cartesian3DimScratch = new Matrix2.Cartesian3();
- const cartesian2Scratch = new Matrix2.Cartesian2();
- const matrix4Scratch = new Matrix2.Matrix4();
- const matrix4Scratch2 = new Matrix2.Matrix4();
- const SHIFT_LEFT_12 = Math.pow(2.0, 12.0);
- /**
- * Data used to quantize and pack the terrain mesh. The position can be unpacked for picking and all attributes
- * are unpacked in the vertex shader.
- *
- * @alias TerrainEncoding
- * @constructor
- *
- * @param {Cartesian3} center The center point of the vertices.
- * @param {AxisAlignedBoundingBox} axisAlignedBoundingBox The bounds of the tile in the east-north-up coordinates at the tiles center.
- * @param {Number} minimumHeight The minimum height.
- * @param {Number} maximumHeight The maximum height.
- * @param {Matrix4} fromENU The east-north-up to fixed frame matrix at the center of the terrain mesh.
- * @param {Boolean} hasVertexNormals If the mesh has vertex normals.
- * @param {Boolean} [hasWebMercatorT=false] true if the terrain data includes a Web Mercator texture coordinate; otherwise, false.
- * @param {Boolean} [hasGeodeticSurfaceNormals=false] true if the terrain data includes geodetic surface normals; otherwise, false.
- * @param {Number} [exaggeration=1.0] A scalar used to exaggerate terrain.
- * @param {Number} [exaggerationRelativeHeight=0.0] The relative height from which terrain is exaggerated.
- *
- * @private
- */
- function TerrainEncoding(
- center,
- axisAlignedBoundingBox,
- minimumHeight,
- maximumHeight,
- fromENU,
- hasVertexNormals,
- hasWebMercatorT,
- hasGeodeticSurfaceNormals,
- exaggeration,
- exaggerationRelativeHeight
- ) {
- let quantization = TerrainQuantization$1.NONE;
- let toENU;
- let matrix;
- if (
- defaultValue.defined(axisAlignedBoundingBox) &&
- defaultValue.defined(minimumHeight) &&
- defaultValue.defined(maximumHeight) &&
- defaultValue.defined(fromENU)
- ) {
- const minimum = axisAlignedBoundingBox.minimum;
- const maximum = axisAlignedBoundingBox.maximum;
- const dimensions = Matrix2.Cartesian3.subtract(
- maximum,
- minimum,
- cartesian3DimScratch
- );
- const hDim = maximumHeight - minimumHeight;
- const maxDim = Math.max(Matrix2.Cartesian3.maximumComponent(dimensions), hDim);
- if (maxDim < SHIFT_LEFT_12 - 1.0) {
- quantization = TerrainQuantization$1.BITS12;
- } else {
- quantization = TerrainQuantization$1.NONE;
- }
- toENU = Matrix2.Matrix4.inverseTransformation(fromENU, new Matrix2.Matrix4());
- const translation = Matrix2.Cartesian3.negate(minimum, cartesian3Scratch);
- Matrix2.Matrix4.multiply(
- Matrix2.Matrix4.fromTranslation(translation, matrix4Scratch),
- toENU,
- toENU
- );
- const scale = cartesian3Scratch;
- scale.x = 1.0 / dimensions.x;
- scale.y = 1.0 / dimensions.y;
- scale.z = 1.0 / dimensions.z;
- Matrix2.Matrix4.multiply(Matrix2.Matrix4.fromScale(scale, matrix4Scratch), toENU, toENU);
- matrix = Matrix2.Matrix4.clone(fromENU);
- Matrix2.Matrix4.setTranslation(matrix, Matrix2.Cartesian3.ZERO, matrix);
- fromENU = Matrix2.Matrix4.clone(fromENU, new Matrix2.Matrix4());
- const translationMatrix = Matrix2.Matrix4.fromTranslation(minimum, matrix4Scratch);
- const scaleMatrix = Matrix2.Matrix4.fromScale(dimensions, matrix4Scratch2);
- const st = Matrix2.Matrix4.multiply(translationMatrix, scaleMatrix, matrix4Scratch);
- Matrix2.Matrix4.multiply(fromENU, st, fromENU);
- Matrix2.Matrix4.multiply(matrix, st, matrix);
- }
- /**
- * How the vertices of the mesh were compressed.
- * @type {TerrainQuantization}
- */
- this.quantization = quantization;
- /**
- * The minimum height of the tile including the skirts.
- * @type {Number}
- */
- this.minimumHeight = minimumHeight;
- /**
- * The maximum height of the tile.
- * @type {Number}
- */
- this.maximumHeight = maximumHeight;
- /**
- * The center of the tile.
- * @type {Cartesian3}
- */
- this.center = Matrix2.Cartesian3.clone(center);
- /**
- * A matrix that takes a vertex from the tile, transforms it to east-north-up at the center and scales
- * it so each component is in the [0, 1] range.
- * @type {Matrix4}
- */
- this.toScaledENU = toENU;
- /**
- * A matrix that restores a vertex transformed with toScaledENU back to the earth fixed reference frame
- * @type {Matrix4}
- */
- this.fromScaledENU = fromENU;
- /**
- * The matrix used to decompress the terrain vertices in the shader for RTE rendering.
- * @type {Matrix4}
- */
- this.matrix = matrix;
- /**
- * The terrain mesh contains normals.
- * @type {Boolean}
- */
- this.hasVertexNormals = hasVertexNormals;
- /**
- * The terrain mesh contains a vertical texture coordinate following the Web Mercator projection.
- * @type {Boolean}
- */
- this.hasWebMercatorT = defaultValue.defaultValue(hasWebMercatorT, false);
- /**
- * The terrain mesh contains geodetic surface normals, used for terrain exaggeration.
- * @type {Boolean}
- */
- this.hasGeodeticSurfaceNormals = defaultValue.defaultValue(
- hasGeodeticSurfaceNormals,
- false
- );
- /**
- * A scalar used to exaggerate terrain.
- * @type {Number}
- */
- this.exaggeration = defaultValue.defaultValue(exaggeration, 1.0);
- /**
- * The relative height from which terrain is exaggerated.
- */
- this.exaggerationRelativeHeight = defaultValue.defaultValue(
- exaggerationRelativeHeight,
- 0.0
- );
- /**
- * The number of components in each vertex. This value can differ with different quantizations.
- * @type {Number}
- */
- this.stride = 0;
- this._offsetGeodeticSurfaceNormal = 0;
- this._offsetVertexNormal = 0;
- // Calculate the stride and offsets declared above
- this._calculateStrideAndOffsets();
- }
- TerrainEncoding.prototype.encode = function (
- vertexBuffer,
- bufferIndex,
- position,
- uv,
- height,
- normalToPack,
- webMercatorT,
- geodeticSurfaceNormal
- ) {
- const u = uv.x;
- const v = uv.y;
- if (this.quantization === TerrainQuantization$1.BITS12) {
- position = Matrix2.Matrix4.multiplyByPoint(
- this.toScaledENU,
- position,
- cartesian3Scratch
- );
- position.x = ComponentDatatype.CesiumMath.clamp(position.x, 0.0, 1.0);
- position.y = ComponentDatatype.CesiumMath.clamp(position.y, 0.0, 1.0);
- position.z = ComponentDatatype.CesiumMath.clamp(position.z, 0.0, 1.0);
- const hDim = this.maximumHeight - this.minimumHeight;
- const h = ComponentDatatype.CesiumMath.clamp((height - this.minimumHeight) / hDim, 0.0, 1.0);
- Matrix2.Cartesian2.fromElements(position.x, position.y, cartesian2Scratch);
- const compressed0 = AttributeCompression.AttributeCompression.compressTextureCoordinates(
- cartesian2Scratch
- );
- Matrix2.Cartesian2.fromElements(position.z, h, cartesian2Scratch);
- const compressed1 = AttributeCompression.AttributeCompression.compressTextureCoordinates(
- cartesian2Scratch
- );
- Matrix2.Cartesian2.fromElements(u, v, cartesian2Scratch);
- const compressed2 = AttributeCompression.AttributeCompression.compressTextureCoordinates(
- cartesian2Scratch
- );
- vertexBuffer[bufferIndex++] = compressed0;
- vertexBuffer[bufferIndex++] = compressed1;
- vertexBuffer[bufferIndex++] = compressed2;
- if (this.hasWebMercatorT) {
- Matrix2.Cartesian2.fromElements(webMercatorT, 0.0, cartesian2Scratch);
- const compressed3 = AttributeCompression.AttributeCompression.compressTextureCoordinates(
- cartesian2Scratch
- );
- vertexBuffer[bufferIndex++] = compressed3;
- }
- } else {
- Matrix2.Cartesian3.subtract(position, this.center, cartesian3Scratch);
- vertexBuffer[bufferIndex++] = cartesian3Scratch.x;
- vertexBuffer[bufferIndex++] = cartesian3Scratch.y;
- vertexBuffer[bufferIndex++] = cartesian3Scratch.z;
- vertexBuffer[bufferIndex++] = height;
- vertexBuffer[bufferIndex++] = u;
- vertexBuffer[bufferIndex++] = v;
- if (this.hasWebMercatorT) {
- vertexBuffer[bufferIndex++] = webMercatorT;
- }
- }
- if (this.hasVertexNormals) {
- vertexBuffer[bufferIndex++] = AttributeCompression.AttributeCompression.octPackFloat(
- normalToPack
- );
- }
- if (this.hasGeodeticSurfaceNormals) {
- vertexBuffer[bufferIndex++] = geodeticSurfaceNormal.x;
- vertexBuffer[bufferIndex++] = geodeticSurfaceNormal.y;
- vertexBuffer[bufferIndex++] = geodeticSurfaceNormal.z;
- }
- return bufferIndex;
- };
- const scratchPosition = new Matrix2.Cartesian3();
- const scratchGeodeticSurfaceNormal = new Matrix2.Cartesian3();
- TerrainEncoding.prototype.addGeodeticSurfaceNormals = function (
- oldBuffer,
- newBuffer,
- ellipsoid
- ) {
- if (this.hasGeodeticSurfaceNormals) {
- return;
- }
- const oldStride = this.stride;
- const vertexCount = oldBuffer.length / oldStride;
- this.hasGeodeticSurfaceNormals = true;
- this._calculateStrideAndOffsets();
- const newStride = this.stride;
- for (let index = 0; index < vertexCount; index++) {
- for (let offset = 0; offset < oldStride; offset++) {
- const oldIndex = index * oldStride + offset;
- const newIndex = index * newStride + offset;
- newBuffer[newIndex] = oldBuffer[oldIndex];
- }
- const position = this.decodePosition(newBuffer, index, scratchPosition);
- const geodeticSurfaceNormal = ellipsoid.geodeticSurfaceNormal(
- position,
- scratchGeodeticSurfaceNormal
- );
- const bufferIndex = index * newStride + this._offsetGeodeticSurfaceNormal;
- newBuffer[bufferIndex] = geodeticSurfaceNormal.x;
- newBuffer[bufferIndex + 1] = geodeticSurfaceNormal.y;
- newBuffer[bufferIndex + 2] = geodeticSurfaceNormal.z;
- }
- };
- TerrainEncoding.prototype.removeGeodeticSurfaceNormals = function (
- oldBuffer,
- newBuffer
- ) {
- if (!this.hasGeodeticSurfaceNormals) {
- return;
- }
- const oldStride = this.stride;
- const vertexCount = oldBuffer.length / oldStride;
- this.hasGeodeticSurfaceNormals = false;
- this._calculateStrideAndOffsets();
- const newStride = this.stride;
- for (let index = 0; index < vertexCount; index++) {
- for (let offset = 0; offset < newStride; offset++) {
- const oldIndex = index * oldStride + offset;
- const newIndex = index * newStride + offset;
- newBuffer[newIndex] = oldBuffer[oldIndex];
- }
- }
- };
- TerrainEncoding.prototype.decodePosition = function (buffer, index, result) {
- if (!defaultValue.defined(result)) {
- result = new Matrix2.Cartesian3();
- }
- index *= this.stride;
- if (this.quantization === TerrainQuantization$1.BITS12) {
- const xy = AttributeCompression.AttributeCompression.decompressTextureCoordinates(
- buffer[index],
- cartesian2Scratch
- );
- result.x = xy.x;
- result.y = xy.y;
- const zh = AttributeCompression.AttributeCompression.decompressTextureCoordinates(
- buffer[index + 1],
- cartesian2Scratch
- );
- result.z = zh.x;
- return Matrix2.Matrix4.multiplyByPoint(this.fromScaledENU, result, result);
- }
- result.x = buffer[index];
- result.y = buffer[index + 1];
- result.z = buffer[index + 2];
- return Matrix2.Cartesian3.add(result, this.center, result);
- };
- TerrainEncoding.prototype.getExaggeratedPosition = function (
- buffer,
- index,
- result
- ) {
- result = this.decodePosition(buffer, index, result);
- const exaggeration = this.exaggeration;
- const exaggerationRelativeHeight = this.exaggerationRelativeHeight;
- const hasExaggeration = exaggeration !== 1.0;
- if (hasExaggeration && this.hasGeodeticSurfaceNormals) {
- const geodeticSurfaceNormal = this.decodeGeodeticSurfaceNormal(
- buffer,
- index,
- scratchGeodeticSurfaceNormal
- );
- const rawHeight = this.decodeHeight(buffer, index);
- const heightDifference =
- TerrainExaggeration.getHeight(
- rawHeight,
- exaggeration,
- exaggerationRelativeHeight
- ) - rawHeight;
- // some math is unrolled for better performance
- result.x += geodeticSurfaceNormal.x * heightDifference;
- result.y += geodeticSurfaceNormal.y * heightDifference;
- result.z += geodeticSurfaceNormal.z * heightDifference;
- }
- return result;
- };
- TerrainEncoding.prototype.decodeTextureCoordinates = function (
- buffer,
- index,
- result
- ) {
- if (!defaultValue.defined(result)) {
- result = new Matrix2.Cartesian2();
- }
- index *= this.stride;
- if (this.quantization === TerrainQuantization$1.BITS12) {
- return AttributeCompression.AttributeCompression.decompressTextureCoordinates(
- buffer[index + 2],
- result
- );
- }
- return Matrix2.Cartesian2.fromElements(buffer[index + 4], buffer[index + 5], result);
- };
- TerrainEncoding.prototype.decodeHeight = function (buffer, index) {
- index *= this.stride;
- if (this.quantization === TerrainQuantization$1.BITS12) {
- const zh = AttributeCompression.AttributeCompression.decompressTextureCoordinates(
- buffer[index + 1],
- cartesian2Scratch
- );
- return (
- zh.y * (this.maximumHeight - this.minimumHeight) + this.minimumHeight
- );
- }
- return buffer[index + 3];
- };
- TerrainEncoding.prototype.decodeWebMercatorT = function (buffer, index) {
- index *= this.stride;
- if (this.quantization === TerrainQuantization$1.BITS12) {
- return AttributeCompression.AttributeCompression.decompressTextureCoordinates(
- buffer[index + 3],
- cartesian2Scratch
- ).x;
- }
- return buffer[index + 6];
- };
- TerrainEncoding.prototype.getOctEncodedNormal = function (
- buffer,
- index,
- result
- ) {
- index = index * this.stride + this._offsetVertexNormal;
- const temp = buffer[index] / 256.0;
- const x = Math.floor(temp);
- const y = (temp - x) * 256.0;
- return Matrix2.Cartesian2.fromElements(x, y, result);
- };
- TerrainEncoding.prototype.decodeGeodeticSurfaceNormal = function (
- buffer,
- index,
- result
- ) {
- index = index * this.stride + this._offsetGeodeticSurfaceNormal;
- result.x = buffer[index];
- result.y = buffer[index + 1];
- result.z = buffer[index + 2];
- return result;
- };
- TerrainEncoding.prototype._calculateStrideAndOffsets = function () {
- let vertexStride = 0;
- switch (this.quantization) {
- case TerrainQuantization$1.BITS12:
- vertexStride += 3;
- break;
- default:
- vertexStride += 6;
- }
- if (this.hasWebMercatorT) {
- vertexStride += 1;
- }
- if (this.hasVertexNormals) {
- this._offsetVertexNormal = vertexStride;
- vertexStride += 1;
- }
- if (this.hasGeodeticSurfaceNormals) {
- this._offsetGeodeticSurfaceNormal = vertexStride;
- vertexStride += 3;
- }
- this.stride = vertexStride;
- };
- const attributesIndicesNone = {
- position3DAndHeight: 0,
- textureCoordAndEncodedNormals: 1,
- geodeticSurfaceNormal: 2,
- };
- const attributesIndicesBits12 = {
- compressed0: 0,
- compressed1: 1,
- geodeticSurfaceNormal: 2,
- };
- TerrainEncoding.prototype.getAttributes = function (buffer) {
- const datatype = ComponentDatatype.ComponentDatatype.FLOAT;
- const sizeInBytes = ComponentDatatype.ComponentDatatype.getSizeInBytes(datatype);
- const strideInBytes = this.stride * sizeInBytes;
- let offsetInBytes = 0;
- const attributes = [];
- function addAttribute(index, componentsPerAttribute) {
- attributes.push({
- index: index,
- vertexBuffer: buffer,
- componentDatatype: datatype,
- componentsPerAttribute: componentsPerAttribute,
- offsetInBytes: offsetInBytes,
- strideInBytes: strideInBytes,
- });
- offsetInBytes += componentsPerAttribute * sizeInBytes;
- }
- if (this.quantization === TerrainQuantization$1.NONE) {
- addAttribute(attributesIndicesNone.position3DAndHeight, 4);
- let componentsTexCoordAndNormals = 2;
- componentsTexCoordAndNormals += this.hasWebMercatorT ? 1 : 0;
- componentsTexCoordAndNormals += this.hasVertexNormals ? 1 : 0;
- addAttribute(
- attributesIndicesNone.textureCoordAndEncodedNormals,
- componentsTexCoordAndNormals
- );
- if (this.hasGeodeticSurfaceNormals) {
- addAttribute(attributesIndicesNone.geodeticSurfaceNormal, 3);
- }
- } else {
- // When there is no webMercatorT or vertex normals, the attribute only needs 3 components: x/y, z/h, u/v.
- // WebMercatorT and vertex normals each take up one component, so if only one of them is present the first
- // attribute gets a 4th component. If both are present, we need an additional attribute that has 1 component.
- const usingAttribute0Component4 =
- this.hasWebMercatorT || this.hasVertexNormals;
- const usingAttribute1Component1 =
- this.hasWebMercatorT && this.hasVertexNormals;
- addAttribute(
- attributesIndicesBits12.compressed0,
- usingAttribute0Component4 ? 4 : 3
- );
- if (usingAttribute1Component1) {
- addAttribute(attributesIndicesBits12.compressed1, 1);
- }
- if (this.hasGeodeticSurfaceNormals) {
- addAttribute(attributesIndicesBits12.geodeticSurfaceNormal, 3);
- }
- }
- return attributes;
- };
- TerrainEncoding.prototype.getAttributeLocations = function () {
- if (this.quantization === TerrainQuantization$1.NONE) {
- return attributesIndicesNone;
- }
- return attributesIndicesBits12;
- };
- TerrainEncoding.clone = function (encoding, result) {
- if (!defaultValue.defined(encoding)) {
- return undefined;
- }
- if (!defaultValue.defined(result)) {
- result = new TerrainEncoding();
- }
- result.quantization = encoding.quantization;
- result.minimumHeight = encoding.minimumHeight;
- result.maximumHeight = encoding.maximumHeight;
- result.center = Matrix2.Cartesian3.clone(encoding.center);
- result.toScaledENU = Matrix2.Matrix4.clone(encoding.toScaledENU);
- result.fromScaledENU = Matrix2.Matrix4.clone(encoding.fromScaledENU);
- result.matrix = Matrix2.Matrix4.clone(encoding.matrix);
- result.hasVertexNormals = encoding.hasVertexNormals;
- result.hasWebMercatorT = encoding.hasWebMercatorT;
- result.hasGeodeticSurfaceNormals = encoding.hasGeodeticSurfaceNormals;
- result.exaggeration = encoding.exaggeration;
- result.exaggerationRelativeHeight = encoding.exaggerationRelativeHeight;
- result._calculateStrideAndOffsets();
- return result;
- };
- exports.EllipsoidalOccluder = EllipsoidalOccluder;
- exports.TerrainEncoding = TerrainEncoding;
- }));
- //# sourceMappingURL=TerrainEncoding-8fbe9124.js.map
|