123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480 |
- /**
- * @license
- * Cesium - https://github.com/CesiumGS/cesium
- * Version 1.95
- *
- * Copyright 2011-2022 Cesium Contributors
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * Columbus View (Pat. Pend.)
- *
- * Portions licensed separately.
- * See https://github.com/CesiumGS/cesium/blob/main/LICENSE.md for full licensing details.
- */
- define(['exports', './Transforms-273eeb44', './Matrix2-9e1c22e2', './ComponentDatatype-4eeb6d9b', './defaultValue-97284df2', './RuntimeError-4f8ec8a2', './GeometryAttribute-9be2d2e5', './GeometryAttributes-734a3446', './GeometryOffsetAttribute-59b14f45', './IndexDatatype-f228f5fd'], (function (exports, Transforms, Matrix2, ComponentDatatype, defaultValue, RuntimeError, GeometryAttribute, GeometryAttributes, GeometryOffsetAttribute, IndexDatatype) { 'use strict';
- const defaultRadii = new Matrix2.Cartesian3(1.0, 1.0, 1.0);
- const cos = Math.cos;
- const sin = Math.sin;
- /**
- * A description of the outline of an ellipsoid centered at the origin.
- *
- * @alias EllipsoidOutlineGeometry
- * @constructor
- *
- * @param {Object} [options] Object with the following properties:
- * @param {Cartesian3} [options.radii=Cartesian3(1.0, 1.0, 1.0)] The radii of the ellipsoid in the x, y, and z directions.
- * @param {Cartesian3} [options.innerRadii=options.radii] The inner radii of the ellipsoid in the x, y, and z directions.
- * @param {Number} [options.minimumClock=0.0] The minimum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
- * @param {Number} [options.maximumClock=2*PI] The maximum angle lying in the xy-plane measured from the positive x-axis and toward the positive y-axis.
- * @param {Number} [options.minimumCone=0.0] The minimum angle measured from the positive z-axis and toward the negative z-axis.
- * @param {Number} [options.maximumCone=PI] The maximum angle measured from the positive z-axis and toward the negative z-axis.
- * @param {Number} [options.stackPartitions=10] The count of stacks for the ellipsoid (1 greater than the number of parallel lines).
- * @param {Number} [options.slicePartitions=8] The count of slices for the ellipsoid (Equal to the number of radial lines).
- * @param {Number} [options.subdivisions=128] The number of points per line, determining the granularity of the curvature.
- *
- * @exception {DeveloperError} options.stackPartitions must be greater than or equal to one.
- * @exception {DeveloperError} options.slicePartitions must be greater than or equal to zero.
- * @exception {DeveloperError} options.subdivisions must be greater than or equal to zero.
- *
- * @example
- * const ellipsoid = new Cesium.EllipsoidOutlineGeometry({
- * radii : new Cesium.Cartesian3(1000000.0, 500000.0, 500000.0),
- * stackPartitions: 6,
- * slicePartitions: 5
- * });
- * const geometry = Cesium.EllipsoidOutlineGeometry.createGeometry(ellipsoid);
- */
- function EllipsoidOutlineGeometry(options) {
- options = defaultValue.defaultValue(options, defaultValue.defaultValue.EMPTY_OBJECT);
- const radii = defaultValue.defaultValue(options.radii, defaultRadii);
- const innerRadii = defaultValue.defaultValue(options.innerRadii, radii);
- const minimumClock = defaultValue.defaultValue(options.minimumClock, 0.0);
- const maximumClock = defaultValue.defaultValue(options.maximumClock, ComponentDatatype.CesiumMath.TWO_PI);
- const minimumCone = defaultValue.defaultValue(options.minimumCone, 0.0);
- const maximumCone = defaultValue.defaultValue(options.maximumCone, ComponentDatatype.CesiumMath.PI);
- const stackPartitions = Math.round(defaultValue.defaultValue(options.stackPartitions, 10));
- const slicePartitions = Math.round(defaultValue.defaultValue(options.slicePartitions, 8));
- const subdivisions = Math.round(defaultValue.defaultValue(options.subdivisions, 128));
- //>>includeStart('debug', pragmas.debug);
- if (stackPartitions < 1) {
- throw new RuntimeError.DeveloperError("options.stackPartitions cannot be less than 1");
- }
- if (slicePartitions < 0) {
- throw new RuntimeError.DeveloperError("options.slicePartitions cannot be less than 0");
- }
- if (subdivisions < 0) {
- throw new RuntimeError.DeveloperError(
- "options.subdivisions must be greater than or equal to zero."
- );
- }
- if (
- defaultValue.defined(options.offsetAttribute) &&
- options.offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.TOP
- ) {
- throw new RuntimeError.DeveloperError(
- "GeometryOffsetAttribute.TOP is not a supported options.offsetAttribute for this geometry."
- );
- }
- //>>includeEnd('debug');
- this._radii = Matrix2.Cartesian3.clone(radii);
- this._innerRadii = Matrix2.Cartesian3.clone(innerRadii);
- this._minimumClock = minimumClock;
- this._maximumClock = maximumClock;
- this._minimumCone = minimumCone;
- this._maximumCone = maximumCone;
- this._stackPartitions = stackPartitions;
- this._slicePartitions = slicePartitions;
- this._subdivisions = subdivisions;
- this._offsetAttribute = options.offsetAttribute;
- this._workerName = "createEllipsoidOutlineGeometry";
- }
- /**
- * The number of elements used to pack the object into an array.
- * @type {Number}
- */
- EllipsoidOutlineGeometry.packedLength = 2 * Matrix2.Cartesian3.packedLength + 8;
- /**
- * Stores the provided instance into the provided array.
- *
- * @param {EllipsoidOutlineGeometry} value The value to pack.
- * @param {Number[]} array The array to pack into.
- * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements.
- *
- * @returns {Number[]} The array that was packed into
- */
- EllipsoidOutlineGeometry.pack = function (value, array, startingIndex) {
- //>>includeStart('debug', pragmas.debug);
- if (!defaultValue.defined(value)) {
- throw new RuntimeError.DeveloperError("value is required");
- }
- if (!defaultValue.defined(array)) {
- throw new RuntimeError.DeveloperError("array is required");
- }
- //>>includeEnd('debug');
- startingIndex = defaultValue.defaultValue(startingIndex, 0);
- Matrix2.Cartesian3.pack(value._radii, array, startingIndex);
- startingIndex += Matrix2.Cartesian3.packedLength;
- Matrix2.Cartesian3.pack(value._innerRadii, array, startingIndex);
- startingIndex += Matrix2.Cartesian3.packedLength;
- array[startingIndex++] = value._minimumClock;
- array[startingIndex++] = value._maximumClock;
- array[startingIndex++] = value._minimumCone;
- array[startingIndex++] = value._maximumCone;
- array[startingIndex++] = value._stackPartitions;
- array[startingIndex++] = value._slicePartitions;
- array[startingIndex++] = value._subdivisions;
- array[startingIndex] = defaultValue.defaultValue(value._offsetAttribute, -1);
- return array;
- };
- const scratchRadii = new Matrix2.Cartesian3();
- const scratchInnerRadii = new Matrix2.Cartesian3();
- const scratchOptions = {
- radii: scratchRadii,
- innerRadii: scratchInnerRadii,
- minimumClock: undefined,
- maximumClock: undefined,
- minimumCone: undefined,
- maximumCone: undefined,
- stackPartitions: undefined,
- slicePartitions: undefined,
- subdivisions: undefined,
- offsetAttribute: undefined,
- };
- /**
- * Retrieves an instance from a packed array.
- *
- * @param {Number[]} array The packed array.
- * @param {Number} [startingIndex=0] The starting index of the element to be unpacked.
- * @param {EllipsoidOutlineGeometry} [result] The object into which to store the result.
- * @returns {EllipsoidOutlineGeometry} The modified result parameter or a new EllipsoidOutlineGeometry instance if one was not provided.
- */
- EllipsoidOutlineGeometry.unpack = function (array, startingIndex, result) {
- //>>includeStart('debug', pragmas.debug);
- if (!defaultValue.defined(array)) {
- throw new RuntimeError.DeveloperError("array is required");
- }
- //>>includeEnd('debug');
- startingIndex = defaultValue.defaultValue(startingIndex, 0);
- const radii = Matrix2.Cartesian3.unpack(array, startingIndex, scratchRadii);
- startingIndex += Matrix2.Cartesian3.packedLength;
- const innerRadii = Matrix2.Cartesian3.unpack(array, startingIndex, scratchInnerRadii);
- startingIndex += Matrix2.Cartesian3.packedLength;
- const minimumClock = array[startingIndex++];
- const maximumClock = array[startingIndex++];
- const minimumCone = array[startingIndex++];
- const maximumCone = array[startingIndex++];
- const stackPartitions = array[startingIndex++];
- const slicePartitions = array[startingIndex++];
- const subdivisions = array[startingIndex++];
- const offsetAttribute = array[startingIndex];
- if (!defaultValue.defined(result)) {
- scratchOptions.minimumClock = minimumClock;
- scratchOptions.maximumClock = maximumClock;
- scratchOptions.minimumCone = minimumCone;
- scratchOptions.maximumCone = maximumCone;
- scratchOptions.stackPartitions = stackPartitions;
- scratchOptions.slicePartitions = slicePartitions;
- scratchOptions.subdivisions = subdivisions;
- scratchOptions.offsetAttribute =
- offsetAttribute === -1 ? undefined : offsetAttribute;
- return new EllipsoidOutlineGeometry(scratchOptions);
- }
- result._radii = Matrix2.Cartesian3.clone(radii, result._radii);
- result._innerRadii = Matrix2.Cartesian3.clone(innerRadii, result._innerRadii);
- result._minimumClock = minimumClock;
- result._maximumClock = maximumClock;
- result._minimumCone = minimumCone;
- result._maximumCone = maximumCone;
- result._stackPartitions = stackPartitions;
- result._slicePartitions = slicePartitions;
- result._subdivisions = subdivisions;
- result._offsetAttribute =
- offsetAttribute === -1 ? undefined : offsetAttribute;
- return result;
- };
- /**
- * Computes the geometric representation of an outline of an ellipsoid, including its vertices, indices, and a bounding sphere.
- *
- * @param {EllipsoidOutlineGeometry} ellipsoidGeometry A description of the ellipsoid outline.
- * @returns {Geometry|undefined} The computed vertices and indices.
- */
- EllipsoidOutlineGeometry.createGeometry = function (ellipsoidGeometry) {
- const radii = ellipsoidGeometry._radii;
- if (radii.x <= 0 || radii.y <= 0 || radii.z <= 0) {
- return;
- }
- const innerRadii = ellipsoidGeometry._innerRadii;
- if (innerRadii.x <= 0 || innerRadii.y <= 0 || innerRadii.z <= 0) {
- return;
- }
- const minimumClock = ellipsoidGeometry._minimumClock;
- const maximumClock = ellipsoidGeometry._maximumClock;
- const minimumCone = ellipsoidGeometry._minimumCone;
- const maximumCone = ellipsoidGeometry._maximumCone;
- const subdivisions = ellipsoidGeometry._subdivisions;
- const ellipsoid = Matrix2.Ellipsoid.fromCartesian3(radii);
- // Add an extra slice and stack to remain consistent with EllipsoidGeometry
- let slicePartitions = ellipsoidGeometry._slicePartitions + 1;
- let stackPartitions = ellipsoidGeometry._stackPartitions + 1;
- slicePartitions = Math.round(
- (slicePartitions * Math.abs(maximumClock - minimumClock)) /
- ComponentDatatype.CesiumMath.TWO_PI
- );
- stackPartitions = Math.round(
- (stackPartitions * Math.abs(maximumCone - minimumCone)) / ComponentDatatype.CesiumMath.PI
- );
- if (slicePartitions < 2) {
- slicePartitions = 2;
- }
- if (stackPartitions < 2) {
- stackPartitions = 2;
- }
- let extraIndices = 0;
- let vertexMultiplier = 1.0;
- const hasInnerSurface =
- innerRadii.x !== radii.x ||
- innerRadii.y !== radii.y ||
- innerRadii.z !== radii.z;
- let isTopOpen = false;
- let isBotOpen = false;
- if (hasInnerSurface) {
- vertexMultiplier = 2.0;
- // Add 2x slicePartitions to connect the top/bottom of the outer to
- // the top/bottom of the inner
- if (minimumCone > 0.0) {
- isTopOpen = true;
- extraIndices += slicePartitions;
- }
- if (maximumCone < Math.PI) {
- isBotOpen = true;
- extraIndices += slicePartitions;
- }
- }
- const vertexCount =
- subdivisions * vertexMultiplier * (stackPartitions + slicePartitions);
- const positions = new Float64Array(vertexCount * 3);
- // Multiply by two because two points define each line segment
- const numIndices =
- 2 *
- (vertexCount +
- extraIndices -
- (slicePartitions + stackPartitions) * vertexMultiplier);
- const indices = IndexDatatype.IndexDatatype.createTypedArray(vertexCount, numIndices);
- let i;
- let j;
- let theta;
- let phi;
- let index = 0;
- // Calculate sin/cos phi
- const sinPhi = new Array(stackPartitions);
- const cosPhi = new Array(stackPartitions);
- for (i = 0; i < stackPartitions; i++) {
- phi =
- minimumCone + (i * (maximumCone - minimumCone)) / (stackPartitions - 1);
- sinPhi[i] = sin(phi);
- cosPhi[i] = cos(phi);
- }
- // Calculate sin/cos theta
- const sinTheta = new Array(subdivisions);
- const cosTheta = new Array(subdivisions);
- for (i = 0; i < subdivisions; i++) {
- theta =
- minimumClock + (i * (maximumClock - minimumClock)) / (subdivisions - 1);
- sinTheta[i] = sin(theta);
- cosTheta[i] = cos(theta);
- }
- // Calculate the latitude lines on the outer surface
- for (i = 0; i < stackPartitions; i++) {
- for (j = 0; j < subdivisions; j++) {
- positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
- positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
- positions[index++] = radii.z * cosPhi[i];
- }
- }
- // Calculate the latitude lines on the inner surface
- if (hasInnerSurface) {
- for (i = 0; i < stackPartitions; i++) {
- for (j = 0; j < subdivisions; j++) {
- positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
- positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
- positions[index++] = innerRadii.z * cosPhi[i];
- }
- }
- }
- // Calculate sin/cos phi
- sinPhi.length = subdivisions;
- cosPhi.length = subdivisions;
- for (i = 0; i < subdivisions; i++) {
- phi = minimumCone + (i * (maximumCone - minimumCone)) / (subdivisions - 1);
- sinPhi[i] = sin(phi);
- cosPhi[i] = cos(phi);
- }
- // Calculate sin/cos theta for each slice partition
- sinTheta.length = slicePartitions;
- cosTheta.length = slicePartitions;
- for (i = 0; i < slicePartitions; i++) {
- theta =
- minimumClock +
- (i * (maximumClock - minimumClock)) / (slicePartitions - 1);
- sinTheta[i] = sin(theta);
- cosTheta[i] = cos(theta);
- }
- // Calculate the longitude lines on the outer surface
- for (i = 0; i < subdivisions; i++) {
- for (j = 0; j < slicePartitions; j++) {
- positions[index++] = radii.x * sinPhi[i] * cosTheta[j];
- positions[index++] = radii.y * sinPhi[i] * sinTheta[j];
- positions[index++] = radii.z * cosPhi[i];
- }
- }
- // Calculate the longitude lines on the inner surface
- if (hasInnerSurface) {
- for (i = 0; i < subdivisions; i++) {
- for (j = 0; j < slicePartitions; j++) {
- positions[index++] = innerRadii.x * sinPhi[i] * cosTheta[j];
- positions[index++] = innerRadii.y * sinPhi[i] * sinTheta[j];
- positions[index++] = innerRadii.z * cosPhi[i];
- }
- }
- }
- // Create indices for the latitude lines
- index = 0;
- for (i = 0; i < stackPartitions * vertexMultiplier; i++) {
- const topOffset = i * subdivisions;
- for (j = 0; j < subdivisions - 1; j++) {
- indices[index++] = topOffset + j;
- indices[index++] = topOffset + j + 1;
- }
- }
- // Create indices for the outer longitude lines
- let offset = stackPartitions * subdivisions * vertexMultiplier;
- for (i = 0; i < slicePartitions; i++) {
- for (j = 0; j < subdivisions - 1; j++) {
- indices[index++] = offset + i + j * slicePartitions;
- indices[index++] = offset + i + (j + 1) * slicePartitions;
- }
- }
- // Create indices for the inner longitude lines
- if (hasInnerSurface) {
- offset =
- stackPartitions * subdivisions * vertexMultiplier +
- slicePartitions * subdivisions;
- for (i = 0; i < slicePartitions; i++) {
- for (j = 0; j < subdivisions - 1; j++) {
- indices[index++] = offset + i + j * slicePartitions;
- indices[index++] = offset + i + (j + 1) * slicePartitions;
- }
- }
- }
- if (hasInnerSurface) {
- let outerOffset = stackPartitions * subdivisions * vertexMultiplier;
- let innerOffset = outerOffset + subdivisions * slicePartitions;
- if (isTopOpen) {
- // Draw lines from the top of the inner surface to the top of the outer surface
- for (i = 0; i < slicePartitions; i++) {
- indices[index++] = outerOffset + i;
- indices[index++] = innerOffset + i;
- }
- }
- if (isBotOpen) {
- // Draw lines from the top of the inner surface to the top of the outer surface
- outerOffset += subdivisions * slicePartitions - slicePartitions;
- innerOffset += subdivisions * slicePartitions - slicePartitions;
- for (i = 0; i < slicePartitions; i++) {
- indices[index++] = outerOffset + i;
- indices[index++] = innerOffset + i;
- }
- }
- }
- const attributes = new GeometryAttributes.GeometryAttributes({
- position: new GeometryAttribute.GeometryAttribute({
- componentDatatype: ComponentDatatype.ComponentDatatype.DOUBLE,
- componentsPerAttribute: 3,
- values: positions,
- }),
- });
- if (defaultValue.defined(ellipsoidGeometry._offsetAttribute)) {
- const length = positions.length;
- const offsetValue =
- ellipsoidGeometry._offsetAttribute === GeometryOffsetAttribute.GeometryOffsetAttribute.NONE
- ? 0
- : 1;
- const applyOffset = new Uint8Array(length / 3).fill(offsetValue);
- attributes.applyOffset = new GeometryAttribute.GeometryAttribute({
- componentDatatype: ComponentDatatype.ComponentDatatype.UNSIGNED_BYTE,
- componentsPerAttribute: 1,
- values: applyOffset,
- });
- }
- return new GeometryAttribute.Geometry({
- attributes: attributes,
- indices: indices,
- primitiveType: GeometryAttribute.PrimitiveType.LINES,
- boundingSphere: Transforms.BoundingSphere.fromEllipsoid(ellipsoid),
- offsetAttribute: ellipsoidGeometry._offsetAttribute,
- });
- };
- exports.EllipsoidOutlineGeometry = EllipsoidOutlineGeometry;
- }));
- //# sourceMappingURL=EllipsoidOutlineGeometry-2f8770f8.js.map
|